Oral Challenge with Wild-Type Salmonella Typhi Induces Distinct Changes in B Cell Subsets in Individuals Who Develop Typhoid Disease
نویسندگان
چکیده
A novel human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently established by the Oxford Vaccine Group. In this model, 104 CFU of Salmonella resulted in 65% of participants developing typhoid fever (referred here as typhoid diagnosis -TD-) 6-9 days post-challenge. TD was diagnosed in participants meeting clinical (oral temperature ≥38°C for ≥12h) and/or microbiological (S. Typhi bacteremia) endpoints. Changes in B cell subpopulations following S. Typhi challenge remain undefined. To address this issue, a subset of volunteers (6 TD and 4 who did not develop TD -NoTD-) was evaluated. Notable changes included reduction in the frequency of B cells (cells/ml) of TD volunteers during disease days and increase in plasmablasts (PB) during the recovery phase (>day 14). Additionally, a portion of PB of TD volunteers showed a significant increase in activation (CD40, CD21) and gut homing (integrin α4β7) molecules. Furthermore, all BM subsets of TD volunteers showed changes induced by S. Typhi infections such as a decrease in CD21 in switched memory (Sm) CD27+ and Sm CD27- cells as well as upregulation of CD40 in unswitched memory (Um) and Naïve cells. Furthermore, changes in the signaling profile of some BM subsets were identified after S. Typhi-LPS stimulation around time of disease. Notably, naïve cells of TD (compared to NoTD) volunteers showed a higher percentage of cells phosphorylating Akt suggesting enhanced survival of these cells. Interestingly, most these changes were temporally associated with disease onset. This is the first study to describe differences in B cell subsets directly related to clinical outcome following oral challenge with wild-type S. Typhi in humans.
منابع مشابه
Oral Wild-Type Salmonella Typhi Challenge Induces Activation of Circulating Monocytes and Dendritic Cells in Individuals Who Develop Typhoid Disease
A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD-) 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h) and/or microbiological (S. Typhi bacteremia) endpoint...
متن کاملImportance of Salmonella Typhi-Responsive CD8+ T Cell Immunity in a Human Typhoid Fever Challenge Model
Typhoid fever, caused by the human-restricted organism Salmonella enterica serovar Typhi (S. Typhi), constitutes a major global health problem. The development of improved attenuated vaccines is pressing, but delayed by the lack of appropriate preclinical models. Herein, we report that high levels of S. Typhi-responsive CD8+ T cells at baseline significantly correlate with an increased risk of ...
متن کاملSalmonella Typhi Bactericidal Antibodies Reduce Disease Severity but Do Not Protect against Typhoid Fever in a Controlled Human Infection Model
Effective vaccines against Salmonella Typhi, a major cause of febrile illness in tropical regions, can have a significant effect as a disease control measure. Earlier work has shown that immunization with either of two Salmonella Typhi vaccines, licensed Ty21a or candidate M01ZH09, did not provide full immunity in a controlled human infection model. Here, we describe the human humoral immune re...
متن کاملChallenge of Humans with Wild-type Salmonella enterica Serovar Typhi Elicits Changes in the Activation and Homing Characteristics of Mucosal-Associated Invariant T Cells
Gastrointestinal infections by Salmonella enterica serovar Typhi (S. Typhi) are rare in industrialized countries. However, they remain a major public health problem in the developing world with an estimated 26.9 million new cases annually and significant mortality when untreated. Recently, we provided the first direct evidence that CD8+ MAIT cells are activated and have the potential to kill ce...
متن کاملActivation of Salmonella Typhi-Specific Regulatory T Cells in Typhoid Disease in a Wild-Type S. Typhi Challenge Model
Salmonella Typhi (S. Typhi), the causative agent of typhoid fever, causes significant morbidity and mortality worldwide. Currently available vaccines are moderately efficacious, and identification of immunological responses associated with protection or disease will facilitate the development of improved vaccines. We investigated S. Typhi-specific modulation of activation and homing potential o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016